Unit 10B: Thermodynamics Review Sheet

- 1. What are exothermic processes? Heat is released from the process (chemical or physical), and the "system" loses heat (ΔH is negative).
- 2. What are endothermic processes? Heat is added to the process, and the "system" gains heat (ΔH is positive).
- 3. Calculate the enthalpy change for a reaction (ΔH_{rxn}) in three different ways:
 - Using the Heats of formation (ΔH_f)

$\Delta Hrxn = \Sigma \Delta H_f(products) - \Sigma \Delta H_f(reactants)$

Using the Bond Energies:

Δ Hrxn = $\Sigma\Delta$ H(bonds broken) - $\Sigma\Delta$ H(bonds formed)

- Using Hess's Law
- 4. Express the Heat of the Reaction in one of three ways:
 - As ΔH (positive or negative)
 - In a Thermochemical Reaction
 - In a Potential Energy Diagram
- 5. Determine the heat transferred for different amounts of reactants & products using Thermochemical reactions and stoichiometry
- 6. Potential Energy Diagrams:
 - Determine the ΔH and Activation Energies of forward & reverse reactions
 - How does a catalyst affect the potential energy curve? A catalyst reduces the activation energy of both forward and reverse reactions.
- 7. Define Entropy. Entropy (disorder) increases with the following:
 - Adding Particles

GHS HONORS CHEMISTRY

- Adding Energy/Increasing Temperature
- · Increasing Volume
- Entropy increases as the phase changes from solid to liquid to gas.
- Entropy increases as ionic solids ionize in solution.
- 8. Calculate ΛS from a table of thermochemical data:

$\Delta Srxn = \Sigma \Delta S(products) - \Sigma \Delta S(reactants)$

- 9. Define free energy as the energy in a system that is available to do useful work.
- 10. Contrast spontaneous and nonspontaneous reactions: Spontaneous reactions are those with a ΔG that are negative, while nonspontaneous reactions are those with a ΔG that are positive.
- 11. Calculate Gibb's Free Energy:

$$\Delta G = \Delta H_{sys}^{\circ} - T \Delta S_{system}$$

- 12. Calculate the Gibb's Free Energy from an unbalanced chemical reaction using the Δ Hf, Δ S, and reaction Temperature.
- 13. Apply the Gibb's Free energy equation to predict how changes in enthalpy and changes in entropy will influence the spontaneity of forward & reverse reactions.

TABLE 19.4		Effect of Temperature on the Spontaneity of Reactions			
ΔH	ΔS	$-T\Delta S$	$\Delta G = \Delta H - T \Delta S$	Reaction Characteristics	Example
_	+	-	-	Spontaneous at all temperatures	$2 O_3(g) \longrightarrow 3 O_2(g)$
+	-	+	+	Nonspontaneous at all temperatures	$3 O_2(g) \longrightarrow 2 O_3(g)$
-	-	+	+ or -	Spontaneous at low T ; nonspontaneous at high T	$H_2O(l) \longrightarrow H_2O(s)$
+	+	_	+ or -	Spontaneous at high <i>T</i> ; nonspontaneous at low T	$H_2O(s) \longrightarrow H_2O(l)$